217,393 research outputs found

    Pseudo-labels for Supervised Learning on Dynamic Vision Sensor Data, Applied to Object Detection under Ego-motion

    Full text link
    In recent years, dynamic vision sensors (DVS), also known as event-based cameras or neuromorphic sensors, have seen increased use due to various advantages over conventional frame-based cameras. Using principles inspired by the retina, its high temporal resolution overcomes motion blurring, its high dynamic range overcomes extreme illumination conditions and its low power consumption makes it ideal for embedded systems on platforms such as drones and self-driving cars. However, event-based data sets are scarce and labels are even rarer for tasks such as object detection. We transferred discriminative knowledge from a state-of-the-art frame-based convolutional neural network (CNN) to the event-based modality via intermediate pseudo-labels, which are used as targets for supervised learning. We show, for the first time, event-based car detection under ego-motion in a real environment at 100 frames per second with a test average precision of 40.3% relative to our annotated ground truth. The event-based car detector handles motion blur and poor illumination conditions despite not explicitly trained to do so, and even complements frame-based CNN detectors, suggesting that it has learnt generalized visual representations

    Application of the linear matching method to creep-fatigue failure analysis of cruciform weldment manufactured of the austenitic steel AISI type 316N(L)

    Get PDF
    This paper demonstrates the recent extension of the Linear Matching Method (LMM) to include cyclic creep assessment [1] in application to a creep-fatigue analysis of a cruciform weldment made of the stainless steel AISI type 316N(L). The obtained results are compared with the results of experimental studies implemented by Bretherton et al. [2] with the overall objective to identify fatigue strength reduction factors (FSRF) of austenitic weldments for further design application. These studies included a series of strain-controlled tests at 550°C with different combinations of reversed bending moment and dwell time Δt. Five levels of reversed bending moment histories corresponding to defined values of total strain range Δεtot in remote parent material (1%, 0.6%, 0.4%, 0.3%, 0.25%) were used in combination with three variants of creep-fatigue conditions: pure fatigue, 1 hour and 5 hours of dwell period Δt of hold in tension. An overview of previous works devoted to analysis and simulation of these experiments [2] and highlight of the LMM development progress could be found in [3]

    Temperature effect on space charge dynamics in XLPE insulation

    No full text
    This paper reports on space charge evolution in crosslinked polyethylene (XLPE) planar samples approximately 1.20 mm thick subjected to electric stress level of 30 kVdc/mm under four temperature 25 oC, 50 oC, 70 oC and 90 oC for 24 hours. Space charge profiles in both as-received and degassed samples were measured using the laser induced pressure pulse (LIPP) technique. The dc threshold stresses at which space charge initiates are greatly affected by testing temperatures. The results suggest that testing temperature has numerous effects on space charge dynamics such as enhancement of ionic dissociation of polar crosslinked by-products, charge injection, charge mobility and electrical conductivity. Space charge distributions of very different nature were seen at lower temperatures when comparing the results of as-received samples with degassed samples. However at higher temperature, the space charge distribution took the same form, although of lower concentration in degassed samples. Space charge distributions are dominated by positive charge when tested at high temperatures regardless of sample treatment and positive charge propagation enhances as testing temperature increases. This can be a major cause of concern as positive charge propagation has been reported to be related to insulation breakdown

    The effect of degassing on morphology and space charge

    No full text
    It is believed that space charge buildup in cross-linked polyethylene (XLPE) insulation is the main cause for premature failure of underground power cables. The space charge activities in XLPE depend on many factors such as additives, material treatment, ambient temperature, insulator/electrode interface, etc. Degassing is one of the material treatment process commonly employ in cable manufacturing to improve insulation performance. In this paper, investigation on the effect of degassing period has on the morphology and space charge was carried out. Planar XLPE samples of the same composite were subjected to different degassing time. It is discovered that apart from removing volatile by-products, degassing also anneal XLPE material; changing the morphology as a result

    On universal decoherence under gravity: a perspective through the Equivalence Principle

    Get PDF
    In Nature Phys. 11, 668 (2015) (Ref. [1]), a composite particle prepared in a pure initial quantum state and propagated in a uniform gravitational field is shown to undergo a decoherence process at a rate determined by the gravitational acceleration. By assuming Einstein's Equivalence Principle to be valid, we demonstrate, first in a Lorentz frame with accelerating detectors, and then directly in the Lab frame with uniform gravity, that the dephasing between the different internal states arise not from gravity but rather from differences in their rest mass, and the mass dependence of the de Broglie wave's dispersion relation. We provide an alternative view to the situation considered by Ref. [1], where we propose that gravity plays a kinematic role in the loss of fringe visibility by giving the detector a transverse velocity relative to the particle beam; visibility can be easily recovered by giving the screen an appropriate uniform velocity. We finally propose that dephasing due to gravity may in fact take place for certain modifications to the gravitational potential where the Equivalence Principle is violated.Comment: 5 pages, 3 figure

    Life-cycle, effort and academic deadwood

    Get PDF
    It has been observed that university professors sometimes become less research active in their mature years. This paper models the decision to become inactive as a utility maximising problem under conditions of uncertainty and derives an age-dependent inactivity condition for the level of research productivity. The economic analysis is applicable to other professions as well were work effort is difficult to observe along some dimensions

    Dynamics of Dry Friction: A Numerical Investigation

    Get PDF
    We perform extended numerical simulation of the dynamics of dry friction, based on a model derived from the phenomenological description proposed by T. Baumberger et al.. In the case of small deviation from the steady sliding motion, the model is shown to be equivalent to the state- and rate-dependent friction law which was first introduced by Rice and Ruina on the basis of experiments on rocks. We obtain the dynamical phase diagram that agrees well with the experimental results on the paper-on-paper systems. In particular, the bifurcation between stick-slip and steady sliding are shown to change from a direct (supercritical) Hopf type to an inverted (subcritical) one as the driving velocity increases, in agreement with the experiments.Comment: 7 pages, 5 figures, using RevTe
    corecore